Мониторинг и прогноз болезней растений

Мониторинг и прогноз болезней растений

Прогноз развития вредоносных болезней сельскохозяйственных растений достаточно активно развивается с 70-х годов XX века. Он целесообразен, когда по отношению к болезни или их комплекса, существуют эффективные меры защиты растений. Для большинства опасных инфекционных болезней характерна значительная динамичность, которая проявляется в поражении растений на больших или меньших площадях и разной степени их поражения в тот или иной промежуток времени, от чего зависит возможность возникновения и потерь урожая.

Теоретическое обоснование прогноза болезней

Современные теории прогнозов болезней растений основываются на результатах изучения закономерностей патогенеза и влияния на него факторов внешней среды. При этом развитие болезни рассматривается как функция, зависящая от многих аргументов внешней среды, внутренних особенностей растений и патогенов. Взаимодействие растения, патогена и среды Я. Планк (1972) назвал треугольником болезни. Затем к этим основным компонентам были добавлены фактор времени и антропогенного воздействия (рис. 1).

Модели патологического процесса (по Agrios, 1988)
Рис. 1. Модели патологического процесса (по Agrios, 1988)

В. А. Чулкина (1991) разработала модель эпифитотии, которая изображена на рис. 2. Таким образом, теоретическая и методологическая основа современных систем защиты растений и прогнозирования эпифитотий болезней одинакова: через влияние и учет природных и антропогенных факторов на внутренние биологические факторы эпифитотиологического процесса. Анализ взаимодействия факторов следует начинать с источника возбудителя инфекции — первого звена цепи внутренних биологических факторов.

Динамика развития всякого патологического процесса может быть показана в общем виде как:

y=ƒ(x)

где:

  • у — показатель (баллы или %) пораженной ткани растения;
  • ƒ(x) — это функция, которая отражает зависимость изменений «у» от условий, в которых развивается болезнь.

Одной из основных характеристик патологического процесса является скорость инфекции.

Скорость инфекции — увеличение количества (или части) пораженной ткани за единицу времени.

Модель эпифитотиологического процесса (по Чулкиной, 1991)
Рис. 2. Модель эпифитотиологического процесса (по Чулкиной, 1991)

Скорость инфекции преимущественно зависит от погодных условий. Для определения скорости развития эпифитотий широко применяется математическое моделирование. Оно позволяет выявлять значение отдельных факторов для динамики болезни и влияние на них условий патологического процесса.

Математическая модель Я. Планка, которая отражает развитие эпифитотии, выраженна уравнением: formula1 где:

formula1_1 — скорость увеличения болезни за единицу времени;

х — количество (часть) больной ткани растения;

t — время развития болезни;

(1-х) — количество (часть) здоровой ткани, доступной к заражению;

r — скорость распространения инфекции.

Следует отметить, что большую опасность растениям представляют те эпифитотии, которые достигают высокого уровня развития на ранних фенофазах культурных растений задолго до формирования и вызревания урожая.

Для того, чтобы эпифитотия возникла, необходимы следующие предпосылки:

  • а) достаточная масса растений, восприимчивых к этой болезни;
  • б) наличие высокоагрессивных и вирулентных возбудителей;
  • в) достаточное количество инфекционного начала.

Скорость болезни, ее развитие и вредоносность в дальнейшем зависят от степени благоприятности погодных и других внешних условий среды и времени их воздействия на определенную фенофазу растения. Сложность и многофакторность биоэкологических процессов развития эпифитотий требует высокой степени их изучения, постоянного совершенствования методов, оборудование для сбора и анализа фитосанитарной информации и прогнозирования.

Формы проявления эпифитотиологического процесса

Необходимо различать понятия «очаг инфекции» с термином «источник возбудителя инфекции». И. Г. Бейлин (1986), В. А. Чулкина (1991) определяют эпифитотиологический очаг, как место нахождения источника инфекции, в рамках которого возможно заражение растений при определенных условиях. Именно из очага инфекции в дальнейшем идет распространение болезни на поле, в севообороте, в определенной зоне.

Согласно утвержденному К. М. Степанова (1972) очаг инфекции, это местность, в которой после совокупности исторических, природных и хозяйственных условий есть предпосылки для частых массовых проявлений болезни. Согласно с этим одной из задач мониторинга болезней сельскохозяйственных растений является выявление очагов инфекции и наблюдение за ними для проведения своевременных мер.

Очаги пораженных растений возникают у истоков возбудителя инфекции. При благоприятных условиях пределы очага расширяются, образуются вторичные дочерние очаги. Большое число небольших по площади очагов создает вид равномерного распространения болезни на поле. Скорость этого процесса зависит от количества генераций патогена за определенное время. На рис. 3 показана схема возникновения эпифитотии.

Схема прохождения эпифитотий
Рис. 3. Схема прохождения эпифитотий

Эпифитотиологический процесс может иметь четыре уровня:

  • спорадическое обнаружения,
  • эпифитотийная вспышка,
  • эпифитотия;
  • панфитотия.

Спорадическое обнаружения — это отдельные больные растения, заражение которых произошло от первичного источника инфекции.

При этом болезнь не вызывает уменьшение урожая и его качества (табл. 1).

Эпифитотиологическая вспышка — следующий этап эпифитотии — на котором за короткие промежутки времени на ограниченной территории (группа полей, хозяйство, район) отмечено существенное увеличение поражения.

Она возникает под воздействием кратковременной положительной для болезни действия составляющих эпифитотиологического процесса. Поражение растения оценивается как умеренное, если болезнь уменьшает урожай или ухудшает его качество.

Таблица 1

Показатели спорадического выявления некоторых болезней растений

Название болезни Распространение, % Фаза вегетации, время учета
Головня на яровых хлебных злаках 0,3 Полная спелость
Головня на озимых культурах 0,2 Полная спелость
Обыкновенная гниль ярой пшеницы и ячменя 10 Перед сбором урожая
Головня проса 1 Полная спелость
Рак картофеля Одиночные растения Сбор урожая
Кольцевая гниль 5 —»—
Фитофтороз (на клубнях) 2-3 —»—
Фитофтороз (на листьях) 0,1 Бутонизация
Ризоктониоз (на стеблях) 1-2 Цветение
Фитофтороз (на плодах томатов) 5 Сбор урожая

Эпифитотия возникает при сохранении во времени благоприятных условий, в результате чего появляется много эпифитотиологических вспышек, связанных между собой. Развитие болезни характеризуется значительной территориальной распространенностью (область, природно-климатическая зона), степенью поражения, что приводит к существенным потерям продукции.

Панфитотия — максимальное выявление эпифитотиологического процесса, когда болезнь охватывает ряд стран и даже континентов.

Роль возбудителя болезни

Для возникновения и значительного развития болезни необходимо наличие определенного вида (или видов) возбудителя, который имеет специализированные формы, расы или биотипы, агрессивные и вирулентные к сортам и гибридам, выращиваемых в определенной зоне. При этом они должны быть экологически пластичными — устойчивыми к неблагоприятным и критическим условиям существования, способными к быстрому размножению в широком диапазоне значений факторов внешней среды, быть конкурентоспособными при совокупных инфекциях. Не меньшее значение для эпифитотиологической болезни имеет количество инфекционного начала.

В истории защиты растений известно много примеров появления новых вирулентных и агрессивных рас возбудителей болезней ржавчины пшеницы, фитофтороза картофеля и помидоров, мучнистой росе злаков и других болезни на ранее устойчивых районированных сортах. Благодаря гибридизации, гетерокариозу и мутациям через определенный промежуток времени формируются и накапливаются новые расы, они преодолевают устойчивость растений, возникают эпифитотии. Большие площади, что занимает определенный сорт, способствуют появлению агрессивных рас, их инфекционное начало и распространение быстро увеличивается, возникает необходимость замены сорта. Важно своевременно выявить признаки развития новых рас для корректировки селекционных работ и своевременного сортообновления.

Количество инфекционного начала также имеет большое значение для возникновения и динамики болезни. Даже при высокой жизнеспособности патогенов только небольшая их часть вызывает заражение даже в высоко специализированных облигатных паразитов. Относительное количество спор, которые способны при благоприятных условиях вызвать заражение растения называется коэффициент инфекции. В стеблевой ржавчины только 30% спор инфицирует растения. Коэффициент инфекции Phytophthora infestans — 6,5%, Alternaria solani — 1,7%, Septoria lycopersici — 0,2%. Увеличение количества спор на единицу площади растений приводит к повышению степени поражения. Это явление исследовано для головневых и болезней ржавчины пшеницы и многих других грибных болезней.

Увеличение запаса инфекционного начала ведет к существенному поражению на ранних фенофаза растений, повышает вероятность эпифитотии. Известно, что расположение посевов на определенном расстоянии от источников инфекции снижает в дальнейшем пораженность растений аэрогенными болезнями.

Количество спор на зерне может быть основой долгосрочного прогноза твердой головни пшеницы в почве корневых гнилей зерновых колосовых культур, огурца, рак картофеля. Количество спор в воздухе учитывается в прогнозе болезней ржавчины, парши яблони. Но следует учитывать, что количество инфекционного начала действует в зависимости от вирулентности инокулюма, количества доступной заражению ткани растения и его восприимчивости, условий внешней среды.

Специальные организационно-хозяйственные мероприятия, такие как использование и размещение сортов с различной степенью устойчивости, чередование и размещение культур в севооборотах, пространственная изоляция, а также профилактически истребительные мероприятия — обеззараживание семян, почвы, хранилищ, уничтожение пораженных растительных остатков и т.д., направленны на ограничение развития болезни.

Значение растения-хозяина

Важную роль в развитии болезни имеют биологические особенности сортов:

  • скороспелость;,
  • засухоустойчивость;
  • устойчивость к болезням.

На динамику рас патогенов влияет площадь, которую занимает тот или иной сорт. Важное значение имеет наличие или отсутствие дикорастущих растений, сорняков, на которых может храниться или развиваться болезнь.

Восприимчивые и устойчивые сорта различаются между собой по устойчивости к одним и тем же расам патогенов. Это предопределяет разницу в накоплении определенной расы и поражении тех или иных сортов. Поэтому изменения в составе сортов приводят к изменениям в популяциях возбудителя, что в свою очередь влияет на динамику болезни. Яркие примеры сдерживания устойчивыми сортами вредоносных болезней в течение долгого периода известны для многих грибных болезней: ржавчины и головни хлебных злаков, фитофтороза пасленовых и др.

Новые устойчивые сорта одновременно вызывают возможность для развития и накопления сначала маловредоносных, но патогенных и агрессивных рас, существующих или возникающих в регионе.

Истребление кустов барбариса значительно уменьшило интенсивность поражения пшеницы и потери урожая от стеблевой ржавчины в США и др. странах. Известна роль многих других промежуточных растений в развитии болезней ржавчины, злаковых дикорастущих растений — в накоплении инфекционного начала корневых гнилей, мучнистой росы и т.

Широкое распространение сорта приводит, за больший или меньший промежуток времени, к накоплению агрессивных рас возбудителя, существенного поражения растений и как следствие возникает необходимость замены такого сорта или гибрида, что в свою очередь не дает возможности этой расе патогена массово развиваться.

Влияние внешней среды

Внешняя среда влияет на:

  • а) растение-хозяина, которое меняет восприимчивость и устойчивость к болезни, ритм вегетации;
  • б) возбудителя, на его агрессивность, жизнеспособность и скорость распространения;
  • в) влияет на сам патологический процесс -возможность его возникновения и время поражения и прохождения, продолжительность инкубационного периода, выявления болезни.

Погодные факторы имеют определяющую роль в возникновении эпифитотий. Их влияние оказывается многогранно, на различных этапах патологического процесса, вызывающего значительную изменчивость как в сезонном развитии болезней, так и в различных природно-климатических зонах. В большинстве случаев каждый из этих факторов действует в совокупности с другими, меняя степень своего влияния в зависимости от их уровня и экспозиции. Основными климатическими факторами, обуславливающими динамику болезней растений, являются температура и влажность. Свет, ветер, атмосферное давление и т.д. имеют лишь корректирующее воздействие в отдельные периоды жизнедеятельности патогенов (рис. 4).

Использование климатических и погодных факторов в прогнозе болезней растений
Рис. 4. Использование климатических и погодных факторов в прогнозе болезней растений

Температура среды может влиять уже на первых этапах инфекционного процесса. От ее уровня зависит жизнеспособность возбудителя и возможность его сохранения в начале вегетационного периода. Жизнеспособность патогена в значительной степени зависит от формы его существования в критических условиях (табл. 2).

Таблица 2

Температурные показатели развития некоторых возбудителей болезней

Название болезни Стадия развития возбудителя Температура, °С
нижняя граница оптимум верхняя граница
Стеблевая ржавчина пшеницы Прорастание спор 2 21-23 26-31
Заражение растений 10 23-25 30
Развитие у тканях растений 2 20
Бурая ржавчина пшеницы Прорастание спор 2 20 32
Развитие у тканях растений 2 25 35
Желтая ржавчина пшеницы Прорастание спор 1 9-13 23
Заражение растений 5 15-20 26
Развитие у тканях растений 3 12-15 20
Гельминтоспориозная корневая гниль Прорастание спор 6 22-28 36
Развитие у тканях растений 8-9 18-25
Спороношение 5 22-26 35
Пыльная головня пшеницы Прорастание спор 4-5 22-30
Развитие спор 5 16-18 25-30
Фузарироз колоса пшеницы Развитие спор 7-10 25-30 37-38
Милдью винограда Прорастание спор 10-13
Развитие у тканях растений 8 25 33
Оидиум винограда Прорастание спор 5 10-30 33
Фитофтороз картофеля Прорастание спор 6-8 10-15 20
Образование ростовых трубочек 4 25 30

В естественных условиях при постоянных изменениях гидротермического режима споры заметно уменьшают способность к заражению до конца вегетационного периода. Температура среды регулирует и продолжительность срока прорастания спор. Споры большинства фитопатогенных грибов прорастают при высокой влажности воздуха или при наличии капельножидкой влаги. В то же время сохранение влаги на растениях зависит преимущественно от температуры. Такая зависимость может использоваться в экспериментально полученных специальных графиках — номограммах, которые позволяют уточнять детали патологического процесса при мониторинге основных болезней.

Графики (рис. 5 и 6) позволяют определить возможность заражения растений в зависимости от средней температуры периода и продолжительности периода увлажнения. При увеличении периода увлажнения растет количество проросших спор и заражения растений (табл. 3).

Зависимость прорастания конидий возбудителя оидиума винограда от температуры (по Л.А. Сайдаметовым, 1939)
Рис. 5. Зависимость прорастания конидий возбудителя оидиума винограда от температуры (по Л.А. Сайдаметовым, 1939)

Таблица 3

Продолжительность периода увлажнения (ч.), которая необходима для прорастания спор в зависимости от температуры

Название болезни Средняя температура, °С
5 10 15 20 25 30
Бурая ржавчина пшеницы 7 5 4 3,5 3,5-4
Корончатая ржавчина овса 24 10 6 5 5 12
Парша яблони 29 12 8,5 8,5 11
Плодовая гниль 18 12 11 5
Милдью винограда 10,5 7 4,5 2,5-3 1-1,5 6-7
Красная пятнистость сливы 8-9 5 4 3 2

Эта зависимость изучена многими учеными. Интересные данные получены Милсом по парше яблони (рис. 7). Обнаруженная им математическая зависимость степени поражения растений от уровня температур и периода увлажнения листьев использована для программного обеспечения современных приборов-сигнализаторов АВИ-201 и других.

Влияние температуры на продолжительность периода увлажнения и возможность поражения: а) милдью винограда; б) бурой ржавчиной пшеницы
Рис. 6. Влияние температуры на продолжительность периода увлажнения и возможность поражения: а) милдью винограда; б) бурой ржавчиной пшеницы
Степень поражения яблони паршой в зависимости от гидротермического режима: 1 - поражение сильное; 2 - среднее; 3 - слабое
Рис. 7. Степень поражения яблони паршой в зависимости от гидротермического режима: 1 — поражение сильное; 2 — среднее; 3 — слабое

 Температура имеет также влияние на восприимчивость растений к болезням, которая в свою очередь зависит от того, насколько условия среды соответствуют требованиям вида или сорта культуры и в какой мере эти условия отклоняются от оптимальных для растения. Теплообеспечение сказывается на регулировании ритма вегетации растений и болезней. Степень поражения существенно зависит от стечения активных и опасных фаз развития возбудителя из наиболее восприимчивыми и неустойчивыми фазами растения.

Поражение пшеницы твердой головней, свеклы – корнеедом усиливаются при пониженных температурах при прорастании семян и на первых фазах развития растений, развитие курчавости листьев персика – при прохладной погоде до и после распускания почек.

Возбудитель головни лука поражает только молодые растения. При температуре ниже 10 °С рост лука замедляется, а интенсивность прорастания спор не уменьшается, что приводит к увеличению периода взаимодействия растения и паразита, пораженность растений и вредоносность болезни значительно увеличивается.

Парша яблони также поражает преимущественно молодые листья и плоды. Основной период заражения начинается с фазы зеленого конуса и заканчивается через 2-4 недели после цветения, что совпадает по времени с выбрасыванием аскоспор возбудителя. В этот период происходит передача болезни во времени — от прошлого года в следующий, от зимующей сумчатой стадии, формируется в опавших листьях, к следующей конидиальной стадии на листьях и плодах в период вегетации. От степени реализации инфекционного начала зависит дальнейшая динамика болезни. При средней температуре первого месяца вегетации яблони ниже + 12 °С и сумме осадков более 20 мм пораженность паршой значительно увеличивается.

Церкоспороз сахарной свеклы начинает развитие при средних температурах +12-14 °С и минимальных — не ниже 6-7 °С, при влажности воздуха более 60%, а ночью и утром более 85%.

Возбудитель монилиоза яблони активизируется при +13-15 °С, спороношение коккомикоза косточковых культур начинается после устойчивого перехода температуры через 15 °С. Первое заражение яблони паршой начинается при накоплении суммы положительных температур с 1 марта 105-140 °С, оидиума винограда — 237 °С. Для фитофтороза картофеля исследователями предложено несколько подобных показателей, позволяющих на короткие сроки прогнозировать выявление болезни. Согласно «голландским приметам погоды» первое заражение растений проявляется через 15 дней после того, как в течение суток температура, необходимая для образования росы, держится не менее 4 ч., минимальная температура не ниже +10 °С, а в следующие сутки пройдет дождь не менее 0,1 мм, облачность будет не менее 8 баллов. Для краткосрочного прогноза фитофтороза рекомендуются методы ВИЗР, «метеобудки», «переменной средней».

Аналогичных исследований относительно других основных болезней проведено недостаточно. Использование температурных характеристик среды позволяет определять время обнаружения патогенов, скорость развития и вредоносность болезней. В связи с этим важное значение для каждого района могут иметь феноиндикаторы (феносигналы) — легко заметны фенологические явления у растений, которые совпадают по времени с развитием определенных фаз патогенов. Например, стеблевая ржавчина проявляется в фазе колошения озимой пшеницы, фитофтороз — во время цветения картофеля, милдью — при длине побегов виноградной лозы 20-25 см и диаметре листа 2-3 см.

Фенология растений во многих случаях является основой планирования и проведения мониторинга болезней и мер против них. Так, выход в трубку, колошение (флаговый лист) пшеницы — это фазы, когда определяют целесообразность химической защиты зерновых колосовых от основных болезней, пасленовых от фитофтороза — в фазах бутонизации-цветения, винограда от милдью — при длине побегов 20-25 см и диаметре листа 2-3 см и т.д..

В настоящее время накоплено значительное количество информации относительно сезонной и географической изменчивости фенологических явлений. Выявлена определенная устойчивость во времени их прохождения, разработана методика вариационно-статистического анализа к фенологическим явлениям.

Температура в период развития патогена в растении определяет продолжительность инкубационного периода, репродуктивную способность, динамику накопления инфекционного начала и поражения растения. Большое количество поколений даже при малых первичных запасах инфекционного начала приводят к быстрому нарастанию болезни.

Обнаружена зависимость скорости развития многих опасных болезней от температуры. Она наибольшая в пределах оптимальных для патогена значений и замедляется в других режимах. Эта зависимость может быть представлена математически в виде уравнений или графически.

Широко известны номограмма Н. А. Наумовой (фитофтороз картофеля), кривые Мюллера (милдью винограда), Я. А. Сайдаметова (оидиум винограда) (рис. 5), К. М. Степанова (болезни ржавчины злаков) (рис. 8) и др., которые используются для разработки краткосрочных прогнозов развития этих болезней. Математически такая связь может быть выражен формулой: formula2 где:

  • n — продолжительность инкубационного периода;
  • Σt — cумма эффективных температур за период;
  • Т — средняя температура периода;
  • t — нижний температурный порог развития вида.
Продолжительность инкубационного периода в зависимости от температуры: 1 - стеблевая ржавчина пшеницы; 2 - бурая ржавчина ржи; 3 - бурая ржавчина пшеницы.
Рис. 8. Продолжительность инкубационного периода в зависимости от температуры: 1 — стеблевая ржавчина пшеницы; 2 — бурая ржавчина ржи; 3 — бурая ржавчина пшеницы.

Когда требования возбудителя близкие к оптимуму, краткосрочный прогноз по номограммам и формулам достаточно точно совпадает с фактической фенологией патогена. При высоких и низких температурах воздуха патологический процесс замедляется, поэтому это необходимо учитывать при мониторинге болезней, особенно в южных и юго-восточных природно-климатических зонах.

Влагообеспеченность среды оказывает существенное влияние на жизнеспособность патогена. Конидии фитофтороза картофеля при влажности воздуха 20-40% погибают через 1-2 ч., при 50-80% — через 3-5 ч. Монилиальный ожог, парша яблони интенсивно развиваются в годы с влажной прохладной погодой во время цветения и сразу после него. Такой погодный режим способствует развитию возбудителя и одновременно растягивает во времени восприимчивую к болезни фазу плодовых культур. Сильное поражение растений болезнями бывает при частых осадках. Так, благоприятными погодными условиями для септориоза пшеницы считают температуру + 14- 22 °С и не менее 17 дождливых дней в фазу выхода в трубку до фазы молочной спелости.

Решающее значение фактор влажности имеет только в течение относительно короткого периода — от начала прорастания спор до проникновения патогена в растение. Для большинства фитопатогенных грибов заражения растений становится возможным при высокой влажности среды. Так, споры фитофтороза картофеля, стеблевой ржавчины пшеницы, милдью винограда, плодовой гнили прорастают только при наличии капельно-жидкой влаги, для развития бурой, желтой, корончатой ржавчины зерновых необходима 100% влажность воздуха. Для многих болезней — твердая головня зерновых культур, фузариоз, церкоспороз сахарной свеклы увеличение влажности является основным фактором повышения агрессивности патогена и вредоносности болезни.

Известно, что при влажности воздуха 80% и более, определенна метеостанциями в приземном слое воздуха, в травостое растений происходит конденсация капельной влаги. Таким образом, можно, использовав стандартные метеоданные, определить благоприятный за влажностью воздуха период в часах (табл. 4).

Таблица 4

Число часов с влажностью 80% и более при разных значениях среднесуточной влажности воздуха

Средняя суточная влажность воздуха, % Число часов с относительной влажностью >80%
всего утром вечером
50 3 3
60 5 5
70 9 7 2
80 14 9 5
90 22 11 11

Количество дней в месяц с влажностью воздуха более 80% можно определить по формуле:

у=0,58х–32

где:

  • х — средняя относительная влажность воздуха за месяц.

Основным источником влаги являются осадки. Наиболее благоприятными условиями для заражения растений, а для многих болезней и для всего патологического процесса является дожди, которые обеспечивают наличие на растениях влаги на длительный период — частые осадки, туман при оптимальных для патогена температурах.

Особое значение для заражения растений имеет роса. Этот фактор редко учитывают в реальном прогнозировании, хотя количество влаги в виде росы составляет около 10% от общей суммы осадков за теплый период года. Выпадает роса преимущественно ночью при влажности воздуха выше 60%, интенсивно — когда она больше 80%. Росообразование связано с микроклиматом местности. Так, участки картофеля, которые растут в низинах, раньше и сильнее поражаются фитофторозом, сады — паршой и монилиальным ожогом. На полях, которые плохо продуваются ветром, загущенные, засорены сорняками, интенсивность поражения гнилями, пероноспорозом, мучнистой росой, болезнями ржавчины значительно больше, чем на других полях, через более длительный период увлажнения. Фитофтороз картофеля начинает развиваться после смыкания ботвы в междурядьях, когда повышается влажность воздуха в приземном слое.

Уровень влагообеспеченности в период формирования спор влияет на их жизнеспособность и агрессивность, а также на характер их отделения и распространения.

Особое влияние на устойчивость растений имеет содержание влаги в почве. Как высокая, так и низкая влагообеспеченность в зависимости от требований патогена к условиям существования могут существенно ускорять патологический процесс. Низкая влагообеспеченность почвы является одной из основных причин развития увядания картофеля и капусты, корневых гнилей пшеницы и фасоли, корнееда свеклы. М. В. Горленко (1959) и некоторые другие ученые утверждают, что мучнистая роса злаковых культур может развиваться в широких диапазонах влажности и температуры, но наибольший вред от болезни бывает при низкой влажности почвы, которая вызывает угнетение растений, потерю тургора, увядание.

Гельминтоспориозная корневая гниль поражает пшеницу в основном в фазы всходов — кущения, особенно интенсивно при температуре 18-25 °С и влажности почвы 60-80% от полной влагоемкости. При температуре ниже +8-9 °С и влажности менее 25% заражения растений болезнью прекращается. Наибольшая вредоносность корневых гнилей отмечена в годы с неустойчивым режимом влаги в почве, когда весной влаги достаточно, а летом не хватает и распределение ее неравномерно.

Гидротермические условия среды определяют основные аспекты жизнеспособности возбудителя болезней и степень их вреда. Это подтверждают многочисленные данные многих исследователей.

Для оценки благоприятности погоды и прогнозирования болезней используют как стандартные метеоданные, так и специально рассчитаные интегральные показатели: гидротермический коэффициент Селянинова (ГТК), температурно-влажностный показатель (ТВП), коэффициенты интенсивности и кратности осадкови Кк), индексы погоды (Ибл., Ип) и др. Большое практическое значение для краткосрочного прогноза некоторых опасных болезней, в частности ржавчины, фитофтороза, парши яблони, милдью и оидиума винограда имеют номограммы и специальные графики, полученные экспериментальным путем — изучением зависимости патогенеза от основных факторов внешней среды.

Влияние антропогенных факторов

От человека, который выращивает растения, во многом зависит их состояние и соответственно существенно могут изменяться предпосылки для возникновения и развития болезней. Через хозяйственную (агрономическую) деятельность оказывается влияние многочисленных факторов внешней среды.

Человек может способствовать переносу инфекционного начала не только в конкретном хозяйстве или районе, а и в пределах природно-климатических зон, страны и даже континентов, поэтому значительное внимание должно уделяться карантинным мерам.

Организационно-хозяйственные и агротехнические мероприятия меняют микроклимат поля, условия питания и устойчивость растений к болезням, чем создают определенные условия, которые влияют на развитие болезней. Целью этих мероприятий является получение наибольшей производительности растений путем улучшения плодородия почвы, повышения их устойчивости к негативным факторам. Особенно существенно на динамику поражения растений болезнями могут влиять такие организационно-хозяйственные и агротехнические мероприятия: отбор и внедрение устойчивых сортов, обоснованные севообороты и подбор предшественников, система обработки почвы, удобрения, подготовка посевного и посадочного материала, сроки посева, уборка урожая, уничтожения сорняков и послеуборочных растительных остатков и другие.

Выращивание устойчивых сортов является наиболее экономически выгодным и радикальным средством контроля большинства болезней. При одних и тех же условиях внешней среды на разных по устойчивости сортах в одно и то же время будет разная степень поражения растений и соответственно разный уровень потерь урожая. Таким образом, в зависимости от устойчивости сортов в пределах определенной культуры может быть существенно разной необходимость и интенсивность проведения мониторинга и прогнозирования болезни.

Подбор устойчивых сортов и использование в хозяйствах следует проводить согласно рекомендациям Государственного реестра сортов растений России, Польши, Украины и др.. Селекция растений на иммунитет и периодическое обновление сортов должна осуществляться непрерывно в связи с преодолением устойчивости существующих сортов популяциями возбудителей болезней.

Севооборот и предшественники должны обеспечить разграничение родственных культур во времени и пространстве, что дает возможность избегать накопления инфекционного начала в большинстве болезней. Особое значение это имеет для специализированных патогенов. В растительных остатках может оставаться значительный запас инфекции, что способствует более раннему и интенсивному поражению родственных культур на этом поле или вблизи него.

Существенное значение имеет не только выбор предшественников, но и продолжительность времени, в течение которого следует избегать возврата культуры на прежнее поле. В зависимости от жизнеспособности возбудителей этот период составляет для зерновых колосовых культур 1-2 года, сахарной свеклы — 4, подсолнечника — 8.

Система обработки почвы существенно влияет на выживание патогенов и на устойчивость и выносливость растений к болезням. Такие меры как лущения стерни, пахота на зябь, культивация междурядий пропашных культур должны обеспечивать оптимальные условия для развития растений и одновременно быть основой удовлетворительного фитосанитарного состояния полей. Возбудители многих болезней остаются в растительных остатках, отмерших, вследствии поражения, листьях и других органах растений. Их измельчение и заделка в почву ускоряет их разложение почвенными микроорганизмами, патогены попадают под пагубное воздействие антагонистов. Так, лущения стерни предшественника с последующим уничтожением падалицы и всходов сорняков заметно ограничивает пораженность растений озимой пшеницы бурой ржавчиной, септориозом, мучнистой росой, корневыми гнилями. Большое фитосанитарное значение имеет измельчения растительных остатков с последующей качественной вспашкой после уборки урожая кукурузы, подсолнечника, картофеля, овощных культур и т.д..

С другой стороны рациональная система обработки почвы обеспечивает подготовку поля к севу, регулируя водный режим, формирование выровненного семенного ложа способствует одновременному дружному прорастанию семян и дальнейшему развитию растений. Это сокращает период первичного поражения, болезни проявляются позже, устойчивость растений увеличивается.

Бесспорно, глубокая отвальная вспашка имеет значительно выше фитосанитарный эффект, чем другие меры. Потребность уменьшения энергозатрат и сбережения почвенной влаги побуждают производственников к минимализации агротехнических мероприятий. При этом пораженные растительные остатки, которые остаются на поверхности почвы, долгое время могут быть источником следующего эпифитотиологического развития болезней. В этих условиях значительно возрастает роль мониторинга болезней и оптимизация мер защиты на основе сезонного и краткосрочного прогноза.

Посевные качества и подготовка семян являются важным фактором динамики болезней. Щуплые семена формируются на растениях, которые плохо развиваются по разным причинам и часто из-за болезней. Оно не обеспечивает необходимые посевные качества, дружные всходы, устойчивость к неблагоприятным факторам, а часто является источником воспроизведения болезни в следующем поколении растений. Потери урожая вследствие использования непротравленных семян по стоимости могут в десятки раз превышать средства «сэкономленные» агрономом в предпосевной период. Поэтому эта мера химической защиты, как правило, обеспечивает высокую окупаемость, является экологически безопасной и рекомендованой в системах защиты растений, как профилактическая для большинства сельскохозяйственных культур.

Сроки и нормы высева имеют существенное значение для патологического процесса, потому что от этого мероприятия зависит оптимальность развития растений, и особенно на первом этапе органогенеза. Сроки сева могут несколько нарушить синхронизацию развития патогена и растения. В основном для яровых культур лучшими ранние сроки посева, для озимых — поздние в пределах периода благоприятных условий для прорастания семян.

При ранних сроках сева озимой пшеницы значительного распространения в осенний период могут приобрести мучнистая роса, септориоз, бурая ржавчина, корневые гнили, при этом эти болезни позже проявятся и весной, чаще возникает потребность в химической защите.

Завышения норм высева ведет к сгущению посевов, ухудшению микроклимата поля, угнетению растений и уменьшению их устойчивости к болезням.

Уход за посевами также регулирует в определенной степени динамику болезней. Меньше поражаются растения на чистых от сорняков полях. Оптимальное орошение ослабляет вредоносность факультативных патогенов, избыточное увлажнение способствует развитию мучнистой росы, фузариоза, гнилей.

Сбор урожая в оптимальные и сжатые сроки существенно уменьшает потери урожая от болезней, повышает качество семян, уменьшает запас инфекции.

Система удобрения должна обеспечивать растения элементами питания в соответствии с потребностями, чем способствовать их росту и развитию и соответственно повышать устойчивость к болезням. Известно, что избыточное количество азотных удобрений продлевает вегетацию, увеличивает количество пригодной к заражению ткани растений и массу растений, что приводит к более интенсивному поражения многими болезнями.

Сбалансированные фосфорные и особенно калийные удобрения, микроудобрения повышают устойчивость растений к болезням. Роль органических удобрений также проявляется через повышение микробиологической деятельности в почве, ускоряет гибель инфекционного начала болезней.

Таким образом, агротехнические мероприятия часто оказывают решающее влияние на развитие болезней, которые вызывают слабые или факультативные паразиты, поскольку любое ослабление растений вследствие плохого ухода за ними ведет к усилению поражения их болезнями.

Антропогенное воздействие оказывается также через специальные истребительные мероприятия, такие как опрыскивание посевов и насаждений фунгицидами, протравливание семян и посадочного материала, фумигация, химическое и термическое обеззараживание теплиц, хранилищ, почвы, физико-механическое удаление и уничтожение пораженных растений или их отдельных органов, пораженных растительных остатков, пропагул патогенов. Для некоторых болезней, особенно в закрытом грунте, большое значение может иметь биологический метод — использование микроорганизмов-антагонистов и гиперпаразитов. От полноты, своевременности, эффективности проведения истребительных мероприятий во многом зависит возможность дальнейшего массового поражения растений.

Мониторинг болезней, которые не обнаружены или ограниченно распространенны на территории страны, осуществляет Государственная служба по карантину растений.

Роль биотических факторов следует отметить отдельно. Животные и микроорганизмы, которые сами находятся под антропогенным воздействием, существенно влияют на возникновение и развитие болезней растений. Для прогнозирования развития болезней учитывают те биотические факторы, которые имеют наибольшее влияние на течении болезни. Известна зависимость между развитием популяций некоторых вредителей и болезней: насекомые, которые повреждают плоды в саду (казарка, плодожорки и т.д.) способствуют заражению их плодовой гнилью, нематоды известны, как фактор содействия фузариозному увяданию, развитие вирусных болезней прямо зависит от их переносчиков — клещей, тлей и других сосущих вредителей. Поражение паршой плодов яблони и груши, клубней картофеля увеличивает развитие гнилей различного происхождения.

Вместе с тем следует отметить, что агротехнические и биотические факторы изменяются медленно, поэтому их необходимо учитывать преимущественно при разработке долгосрочных и многолетних прогнозов.

Мониторинг и прогноз болезней позволяет:

  • определить общую тенденцию развития патологического процесса;
  • предусматривать степень поражения растений и уровень потерь урожая для каждой зоны (района);
  • определять сроки развития отдельных поколений, заражения и выявления болезни;
  • своевременно информировать службу защиты растений и землепользователей об особенностях инфекционных процессов, степень поражения и возможные потери урожая сельскохозяйственных культур от болезней;
  • рационально организовывать и своевременно проводить профилактические и истребительные мероприятия, оптимизировать технологии выращивания культур в соответствии к фактическим и возможным ступеням развития болезней, их экономическому значению;
  • планировать производство, закупку фунгицидов, совершенствовать их ассортимент и технологии использования;
  • информировать селекционные учреждения о новых агрессивных расах возбудителей болезней.

Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *